延时电阻率断层扫描(ERT)是一种流行的地球物理方法,可从电势差测量中估算三维(3D)通透性场。传统的反转和数据同化方法用于将这些数据吸收到水域模型中以估计渗透性。由于不适合性和维度的诅咒,现有的反转策略提供了较差的估计值和3D渗透率场的低分辨率。深度学习的最新进展为我们提供了强大的算法来克服这一挑战。本文提出了一个深度学习(DL)框架,以估算从延时ERT数据中的3D地下渗透性。为了测试所提出的框架的可行性,我们在模拟数据上训练了启用DL的逆模型。基于水域物理学的地下过程模型用于生成此合成数据以进行深度学习分析。结果表明,拟议的弱监督学习可以捕获3D渗透性领域中的显着空间特征。在数量上,在标记的训练,验证和测试数据集的平均平方平方误差(就自然日志而言)小于0.5。 R2评分(全局度量)大于0.75,每个单元格(本地度量)的百分比误差小于10%。最后,在计算成本方面的额外好处是,所提出的基于DL的反向模型至少比运行正向模型快的速度(104)倍。请注意,传统倒置可能需要多个前向模型模拟(例如,按10到1000的顺序),这非常昂贵。这种计算节省(O(105)-O(107))使提出的基于DL的逆模型具有对地下成像和实时ERT监视应用程序的吸引力,这是由于快速而相当准确的渗透性场估计。
translated by 谷歌翻译
The lack of standardization is a prominent issue in magnetic resonance (MR) imaging. This often causes undesired contrast variations due to differences in hardware and acquisition parameters. In recent years, MR harmonization using image synthesis with disentanglement has been proposed to compensate for the undesired contrast variations. Despite the success of existing methods, we argue that three major improvements can be made. First, most existing methods are built upon the assumption that multi-contrast MR images of the same subject share the same anatomy. This assumption is questionable since different MR contrasts are specialized to highlight different anatomical features. Second, these methods often require a fixed set of MR contrasts for training (e.g., both Tw-weighted and T2-weighted images must be available), which limits their applicability. Third, existing methods generally are sensitive to imaging artifacts. In this paper, we present a novel approach, Harmonization with Attention-based Contrast, Anatomy, and Artifact Awareness (HACA3), to address these three issues. We first propose an anatomy fusion module that enables HACA3 to respect the anatomical differences between MR contrasts. HACA3 is also robust to imaging artifacts and can be trained and applied to any set of MR contrasts. Experiments show that HACA3 achieves state-of-the-art performance under multiple image quality metrics. We also demonstrate the applicability of HACA3 on downstream tasks with diverse MR datasets acquired from 21 sites with different field strengths, scanner platforms, and acquisition protocols.
translated by 谷歌翻译
The SNMMI Artificial Intelligence (SNMMI-AI) Summit, organized by the SNMMI AI Task Force, took place in Bethesda, MD on March 21-22, 2022. It brought together various community members and stakeholders from academia, healthcare, industry, patient representatives, and government (NIH, FDA), and considered various key themes to envision and facilitate a bright future for routine, trustworthy use of AI in nuclear medicine. In what follows, essential issues, challenges, controversies and findings emphasized in the meeting are summarized.
translated by 谷歌翻译
机器学习潜力是分子模拟的重要工具,但是由于缺乏高质量数据集来训练它们的发展,它们的开发阻碍了它们。我们描述了Spice数据集,这是一种新的量子化学数据集,用于训练与模拟与蛋白质相互作用的药物样的小分子相关的潜在。它包含超过110万个小分子,二聚体,二肽和溶剂化氨基酸的构象。它包括15个元素,带电和未充电的分子以及广泛的共价和非共价相互作用。它提供了在{\ omega} b97m-d3(bj)/def2-tzVPPD理论水平以及其他有用的数量(例如多极矩和键阶)上计算出的力和能量。我们在其上训练一组机器学习潜力,并证明它们可以在化学空间的广泛区域中实现化学精度。它可以作为创建可转移的,准备使用潜在功能用于分子模拟的宝贵资源。
translated by 谷歌翻译
开发有效的自动分类器将真实来源与工件分开,对于宽场光学调查的瞬时随访至关重要。在图像差异过程之后,从减法伪像的瞬态检测鉴定是此类分类器的关键步骤,称为真实 - 博格斯分类问题。我们将自我监督的机器学习模型,深入的自组织地图(DESOM)应用于这个“真实的模拟”分类问题。 DESOM结合了自动编码器和一个自组织图以执行聚类,以根据其维度降低的表示形式来区分真实和虚假的检测。我们使用32x32归一化检测缩略图作为底部的输入。我们展示了不同的模型训练方法,并发现我们的最佳DESOM分类器显示出6.6%的检测率,假阳性率为1.5%。 Desom提供了一种更细微的方法来微调决策边界,以确定与其他类型的分类器(例如在神经网络或决策树上构建的)结合使用时可能进行的实际检测。我们还讨论了DESOM及其局限性的其他潜在用法。
translated by 谷歌翻译
通用数据模型解决了标准化电子健康记录(EHR)数据的许多挑战,但无法将其集成深度表型所需的资源。开放的生物学和生物医学本体论(OBO)铸造本体论提供了可用于生物学知识的语义计算表示,并能够整合多种生物医学数据。但是,将EHR数据映射到OBO Foundry本体论需要大量的手动策展和域专业知识。我们介绍了一个框架,用于将观察性医学成果合作伙伴关系(OMOP)标准词汇介绍给OBO铸造本体。使用此框架,我们制作了92,367条条件,8,615种药物成分和10,673个测量结果的映射。域专家验证了映射准确性,并且在24家医院进行检查时,映射覆盖了99%的条件和药物成分和68%的测量结果。最后,我们证明OMOP2OBO映射可以帮助系统地识别可能受益于基因检测的未诊断罕见病患者。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
使用数学模型(例如易感性暴露于易感性的(SEIR)(SEIR),Logistic回归(LR))和一种称为多项式回归方法的机器学习方法进行了对哥伦比亚疾病共同19的分析研究。先前的分析已经对每天的病例,死亡,感染者和暴露于该病毒的人进行了分析,所有这些病例都在550天的时间表中所有人。此外,它使感染扩散的拟合详细介绍了较低的传播误差和统计偏差的最佳方法。最后,提出了四种不同的预防方案,以评估与该疾病有关的每个参数的比率。
translated by 谷歌翻译
无监督的异常检测和定位是至关重要的任务,因为不可能收集和标记所有可能的异常。许多研究强调了整合本地和全球信息以实现异常分割的重要性。为此,对变压器的兴趣越来越大,它允许对远程内容相互作用进行建模。但是,对于大多数图像量表而言,通过自我注意力的全球互动通常太贵了。在这项研究中,我们介绍了Haloae,这是第一个基于Halonet的局部2D版本的自动编码器。使用Haloae,我们创建了一个混合模型,该模型结合了卷积和局部2D块的自我发项层,并通过单个模型共同执行异常检测和分割。我们在MVTEC数据集上取得了竞争成果,表明结合变压器的视觉模型可以受益于自我发挥操作的本地计算,并为其他应用铺平道路。
translated by 谷歌翻译
Majorana示威者是一项领先的实验,寻找具有高纯净锗探测器(HPGE)的中性s中性双β衰变。机器学习提供了一种最大化这些检测器提供的信息量的新方法,但是与传统分析相比,数据驱动的性质使其不可解释。一项可解释性研究揭示了机器的决策逻辑,使我们能够从机器中学习以反馈传统分析。在这项工作中,我们介绍了Majorana演示者数据的第一个机器学习分析。这也是对任何锗探测器实验的第一个可解释的机器学习分析。训练了两个梯度增强的决策树模型,以从数据中学习,并进行了基于游戏理论的模型可解释性研究,以了解分类功率的起源。通过从数据中学习,该分析识别重建参数之间的相关性,以进一步增强背景拒绝性能。通过从机器中学习,该分析揭示了新的背景类别对相互利用的标准Majorana分析的重要性。该模型与下一代锗探测器实验(如传说)高度兼容,因为它可以同时在大量探测器上进行训练。
translated by 谷歌翻译